Asthma – Getting it Right.

Diagnosis, phenotypes, guidelines Treating the right patient with the right treatment

> Rama Vancheeswaran, FRCP, MSc Immunology, PhD Royal Free Hospital NHS Trust (Barnet site)

Learning objectives

- Size of the problem
- What is asthma?. Common misdiagnosis, algorithms for assessment and treatment
- Phenotypes with focus on Obesity
- Guidelines
- Treatments
 - Basic
 - Phenotype based
 - Co-morbidities
 - Biologic treatments for severe asthma
 - Cases

European asthma prevalence

European hospital admission rates for asthma

European asthma mortality

Asthma: The scale of the problem

5.4 million People living with asthma in the UK

Every 10 seconds

someone is having a potentially life-threatening asthma attack in the UK

Every day, the lives of **three families** are devastated by the death of a loved one to an asthma attack...

...yet **two-thirds** of these deaths are preventable

In 2015 1,468 people died from asthma in the UK – the highest level for over 10 years

Adapted from Asthma UK. Asthma facts and statistics [online] 2016. Available from: https://www.asthma.org.uk/about/media/facts-and-statistics/ [Accessed: October 2017].

National Review of Asthma Deaths (NRAD)

Asthma is both over- and under-diagnosed

- Asthma is a clinical diagnosis
- Symptoms can be misleading

71%

• Objective information is rarely used in initial assessment of asthma

Approximately one-third of patients with asthma do not have asthma when objectively assessed¹

of misdiagnosed patients are on therapy¹

Incorrect diagnosis of Asthma in severe asthma referrals to the Brompton

- 12% COPD
- Alpha 1 deficient emphysema
- Bronchiectasis
- Cardiomyopathy
- Obliterative bronchiolitis
- Respiratory Muscle inco-ordination
- Vocal cord dysfunction/Anxiety
- Adverse drug reactions
- Chronic cough syndrome
- OSA

The National review of Asthma Deaths (NRAD) report was the first national investigation of asthma deaths in the UK in May 2014

• NRAD aimed to understand the circumstances surrounding asthma deaths to identify avoidable factors and make recommendations to improve care and reduce the number of deaths

- Of <u>195 asthma deaths</u> occurring between February 2012 and January 2013:
 - For 84 (43%) of those who died, there was no evidence of an asthma review in general practice in the previous year
 - 46% of asthma deaths were identified as being avoidable
 - The majority of people (58%) who died were thought to have mild or moderate asthma
 - PAAPs were provided in only 44 (23%) individuals who died from asthma
 - Exacerbating factors, or triggers (eg drugs, allergic reactions and viral infections), were documented in only half of those who died

NRAD=National Review of Asthma Deaths; PAAP=personalised asthma action plans. Royal College of Physicians. *Why Asthma Still Kills? The National Review of Asthma Deaths (NRAD)* [online] 2014. Available from: https://www.rcplondon.ac.uk/projects/outputs/why-asthma-still-kills [Accessed: July 2017].

NRAD report: Excessive prescribing of SABAs and under-prescribing of preventer medication

Evidence of excessive prescribing of reliever medication

39% of patients on short-acting relievers* at the time of death had been prescribed more than

12short-acting reliever inhalers in the year before they died

While 4% had been prescribed more than 50 reliever inhalers

Evidence of under-prescribing of preventer medication

To comply with recommendations, most patients would usually need at least

12 preventer prescriptions per year

NRAD revealed;

38% f patients on preventer inhalers* received fewer than 4 inhalers in the year leading up to their death

and **80%** eceived fewer than **12** preventer inhalers

Adapted from NRAD (2014)

*Of those patients for which the number of prescriptions was known. Among 189 patients who were on short-acting relievers at the time of death, the number of prescriptions was known for 165. Among 168 patients on preventer inhalers at the time of death, either as stand-alone or in combination, the number of prescriptions was known for 128.

NRAD=National Review of Asthma Deaths; SABA=short-acting ß-agonist.

Royal College of Physicians. *Why Asthma Still Kills? The National Review of Asthma Deaths (NRAD)* [online] 2014. Available from: https://www.rcplondon.ac.uk/projects/outputs/why-asthma-still-kills [Accessed: July 2017].

Regardless of the type of maintenance therapy prescribed, patients increase their use of SABA at the onset of symptoms

Use of SABA rescue medication during the different stages of an asthma worsening

These results are from quantitative research using a structured questionnaire via telephone with 3,415 (16yrs and above) patients on regular ICS or ICS/LABA therapy who were recruited by their physicians. The Asthma Control Questionnaire (ACQ; 6-item version with forced expiratory volume in 1 s question omitted) was used to assess asthma control. 0 represents no impairment and 6 represents maximum impairment.

ICS=inhaled corticosteroid; LABA=long-acting β -agonist; SABA=short-acting β_2 -agonist. Adapted from Partridge M, et al. *BMC Pulm Med* 2006;6:13.

BTS 2016 guidelines removed step 1 and recommended low-dose ICS as the lowest controlling therapy

Summary of management in adults

Adapted from BTS 2016

BTS=British Thoracic society; ICS=inhaled corticosteroid; SABA=short-acting ß-agonist;

SIGN=Scottish Intercollegiate Guidelines Network.

British Thoracic Society. *BTS/SIGN British guideline on the management of asthma* [online] 2016. Available from: https://www.brit-thoracic.org.uk/standards-of-care/guidelines/btssign-british-guideline-on-the-management-of-asthma/ [Accessed: July 2017].

Recommendations for patients with inadequate control on regular preventers have changed

Summary of management in adults

Adapted from BTS 2016

BTS=British Thoracic society; ICS=inhaled corticosteroid; SABA=short-acting ß-agonist;

SIGN=Scottish Intercollegiate Guidelines Network.

British Thoracic Society. *BTS/SIGN British guideline on the management of asthma* [online] 2016. Available from: https://www.brit-thoracic.org.uk/standards-of-care/guidelines/btssign-british-guideline-on-the-management-of-asthma/ [Accessed: July 2017].

Glucocorticoid Receptor Nuclear Translocation in Airway Cells after Inhaled Combination Therapy

Omar S. Usmani, Kazuhiro Ito, Kittipong Maneechotesuwan, Misako Ito, Malcolm Johnson, Peter J. Barnes, and Ian M. Adcock

Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom

AJRCCM Sep 2005, 172: 704

Evaluation: get the basics right then identify the phenotype

- Diagnosis wrong.
 - Pseudoasthma
 - Asthma plus
- Issues with adherence, inhaler technique, self management strategies
- Genuine severe disease
 - Clinically important inflammatory subtypes of severe airway disease
 - Phenotype specific treatment options

Suggested investigations for primary care

- FBC, BNP, IgE,
- Spirometry
- Peak flow chart
- FENO
- Chest Xray
- In secondary/tertiary care
- Lung function, HRCT, Echo, ENT, bronchoscopy, psychology, FENO

		Cluster 1	Cluster 2	Cluster 3	Significance (P Value)*
Variable	Primary Care (n = 184)	Early-Onset Atopic Asthma (n = 61)	Obese Noneosinophilic (n = 27)	Benign Asthma (n = 96)	
Sex ¹ , % female	54.4	45.9	81.5	52.1	0.006
Age, yr (SD)	49.2 (13.9)	44.5 (14.3)	53.9 (14)	50.8 (13)	0.003
Age of onset [†] , yr (SD)	24.7 (19)	14.6 (15.4)	35.3 (19.6)	28.2 (18.3)	< 0.001
Atopic status [†] , % positive	72.8	95.1	51.9	64.6	< 0.001
Body mass index ¹ , kg/m ² (SD)	27.5 (5.4)	26.1 (3.8)	36.2 (5.5)	26 (3.6)	< 0.001
PC20 methacholine ¹¹ , mg/ml	1.04 (1.13)	0.12 (0.86)	1.60 (0.93)	6.39 (0.75)	< 0.001
PC ₂₀ >8 mg/ml, n (%)	64 (34.7)	2 (3.3)	6 (22.2)	56 (58.3)	< 0.001
Peak flow variability ¹¹ , amp % mean	17 (0.38)	20 (0.47)	21.9 (0.32)	14.8 (0.32)	0.039
FEV, change with bronchodilator ¹ , %			1.82 (1.16)		
Post-bronchodilator FEV ₁ , % predicted	91.4 (21)	86.9 (20.7)	91.5 (21.4)	94.2 (20.7)	0.107
spatam eosmophii count , 70	1.52 (0.02)	3.73 (0.04)	1.33 (0.31)	0.03 (0.44)	0.001
FENO ^{EJ} , ppb	31.6 (0.33)	57.5 (0.27)	25.8 (0.29)	22.8 (0.27)	< 0.001
Sputum neutrophil count ¹ , %	55.09 (0.31)	45.87 (0.24)	72.71 (0.13)	57.56 (0.36)	0.038
Modified JACS' (SD)	1.36 (0.74)	1.54 (0.58)	2.06 (0.73)	1.04 (0.66)	< 0.001
Dose of inhaled corticosteroid, BDP equivalent/µg (SD)	632 (579)	548 (559)	746 (611)	653 (581)	0.202
Long-acting bronchodilator use, %	40.2	34.4	48.2	41.7	0.442
Previous hospital admission or emergency attendance, no. per patient	0.60 (1.57)	1.04	0.26	0.20	0.037
Previous outpatient attendance, % attended	15%	22%	19%	6%	0.121
Severe asthma exacerbations (requiring oral corticosteroids) in past 12 mo, no. per patient	1.25 (1.94)	1.86 (0.32)	1.07 (0.32)	0.39 (0.18)	0.002

TABLE 2. CLUSTERS IN PRIMARY CARE

TABLE 3. CLUSTERS IN SECONDARY CARE

		Cluster 1	Cluster 2	Cluster 3	Cluster 4	Significance (P Value)*
Variable	Secondary Care (n = 187)	Early Onset, Atopic (n = 74)	Obese, Noneosinophilic (n = 23)	Early Symptom Predominant (n = 22)	Inflammation Predominant (n = 68)	
Sex1, % female	65.8	75.7	87	68.2	47.1	< 0.001
Age, yr (SD)	43.4 (15.9)	39.4 (15.7)	42.7 (11.1)	35.5 (15.5)	50.6 (15.1)	< 0.001
Age of onset', yr (SD)	20.3 (18.4)	12.7 (12.9)	15.4 (15.2)	12.6 (15)	32.6 (19.1)	< 0.001
Atopic status ¹ , % positive	73.8	83.8	65.2	81.8	63.2	0.024
Body mass index ¹ , kg/m ² (SD)	28.5 (6.5)	27.6 (4.5)	40.9 (6.5)	23.6 (3.1)	27 (3.9)	< 0.001
Peak flow variability ⁴ , amp % mean	32.2 (0.48)	46.1 (0.35)	21.2 (0.76)	24.2 (0.65)	27.6 (0.36)	0.002
FEV ₁ change with	12.8 (0.41)	24.5 (0.31)	9.3 (0.35)	4.5 (0.33)	9.8 (0.34)	< 0.001
Post-bronchodilator FEV ₁ , % predicted (SD)	82.1 (21.1)	79.0 (21.9)	79.0 (18.5)	79.5 (26.1)	87.2 (18.5)	0.093
Ft _{NO} ¹¹ , ppb	43 (0.32)	51.2 (0.36)	24.2 (0.27)	22.6 (0.30)	53.1 (0.32)	< 0.001
Sputum neutrophil count, %1	46.7 (0.32)	45.4 (0.39)	49.3 (0.22)	51.3 (0.23)	45.9 (0.29)	0.892
Modified JACS ¹ (SD)	2.02 (1.16)	2.63 (0.93)	2.37 (1.09)	2.11 (1.11)	1.21 (0.95)	< 0.001
Dose of inhaled corticosteroid, BDP equivalent/µg (SD)	1,018 (539)	1,168 (578)	1,045 (590)	809 (396)	914 (479)	0.008
Long-acting bronchodilator use, %	93.0	91.9	95.4	90.9	94.1	0.999
Maintenance oral corticosteroid use, %	31.7	32.4	22.7	22.7	36.8	0.604
Median Nijmegen score (IQR) (% with score >23) ^I	16 (7-26.5)	20.5 (12-30.25) (44.6)	23 (12-33) (52.2)	16.5 (4.5–27.5) (31.8)	9 (1–17) (19.1)	0.004
Median anxiety score (IQR) (% with score ≥11) ^{II}	7 (4-10)	7.5 (4.75–10.25) (24.3)	8 (3-14) (34.8)	6 (3.75-8.25) (13.6)	6 (3-9) (19.1)	0.34
Median depression score (IQR) (% with score >11) I	4 (2-7)	4.5 (2-8) (13.5)	5 (2-7) (4.3)	4 (2-7) (4.5)	3 (1-6) (7.4)	0.104
Courses of oral corticosteroids for asthma exacerbations, n/case/yr	4.05 (2.33)	4.62 (0.27)	3.90 (0.38)	3.57 (0.49)	3.43 (0.27)	0.02
Hospital admissions for asthma, n/case/yr	1.54	1.64	1.61	1.54	1.23	0.703
Failed clinic appointments, % total appointments to DAC/yr	20.0	26.2	15.7	19.0	14.8	0.027

FeNO is a biomarker of allergic airway inflammation

Adapted from¹

AHR, airway hyper-responsiveness; FeNO, fractional exhaled nitric oxide; IL, interleukin; iNOS, inducible nitric oxide synthase; NO, nitric oxide; STAT, signal transducer and activator of transcription; Th2, T helper type 2 cells 1. Ludviksdottir D et al. @m@espin_1201206193-207; 2. Alving K et al. Eur Respir Mon 2010;49:1-31

Interpretation and clinical utility of FeNO values

FeNO CATEGORY	NORMAL	ELEVATED	HIGH	
FeNO value Adults (ppb) Children	<20–25 <15–20	20/25–50 15/20–35	>50 >35	
Th2-driven inflammation	Unlikely	Likely	Significant	
Diagnosis and interpretation in patients with suspected asthma	 Consider diagnosis other than asthma Response to ICS unlikely 	 Supports a diagnosis of asthma Response to ICS likely 	 Supports a diagnosis of asthma Response to ICS likely 	
Management of, and interpretation in, existing patients with asthma	 Th2-driven inflammation under control Step-down ICS if asthma controlled for 3–6 months 	 Check treatment adherence, inhalation technique, allergen exposure Step-up anti-inflammatory treatment if history of exacerbations* 	 Check treatment adherence, inhalation technique, allergen exposure Risk of exacerbations/ worsening of disease Step-up anti-inflammatory therapy, especially if high blood eosinophil count* Consider different ICS/ add-on systemic anti- inflammatory 	

*Regardless of symptoms Adapted from¹

FeNO, fractional exhaled nitric oxide; ICS, inhaled corticosteroid; ppb, parts per billion; Th2, T helper type 2 cells000809-01 Jan 20151. Bjermer L et al. Respir Med 2014;108:830–41

FeNO helps improve asthma diagnosis and ongoing management

NICE recommends FeNO measurement for diagnosis and management of allergic asthma ¹					
For diagnosis	For management				
 Assessment of inflammation: Allows diagnosis of allergic airway inflammation or not Provides objective evidence to support the diagnosis of asthma Determines the likelihood of clinical response to ICS² Aids differential diagnosis of respiratory symptoms not due to asthma 	 Option to support asthma management in people who are symptomatic despite using ICS¹ FeNO concentrations can: Assist dose titration of anti-inflammatory treatments² Monitor treatment response (disease control) Detect non-adherence to ICS 				

FeNO, fractional exhaled nitric oxide; ICS, inhaled corticosteroid; NICE, National Institute for Health and Care Excellence1. NICE diagnostics guidance [DG12] 2014: http://www.nice.org.uk/guidance/dg12;000809-01 Jag.20wgik RA et al. Am J Respir Crit Care Med 2011;184:602–15

ATS clinical practice guideline, 2011, recommends FeNO measurements

- The ATS recommends the use of FeNO measurement in:¹
 - Diagnosis of eosinophilic airway inflammation
 - **Determining likelihood of steroid responsiveness** in individuals with chronic respiratory symptoms possibly due to airway inflammation
 - Monitoring airway inflammation in patients with asthma

FeNO-guided therapy reduces exacerbation rate in adults

Study	FeNO strategy		Control strategy		Weight (%)	Relative rate (95% CI)	Relative rate
	Rate*	N^{\dagger}	Rate*	N^{\dagger}			
Shaw 2007	0.330	52	0.420	51	29.4	0.79 (0.43, 1.44)	
Smith 2005	0.490	46	0.900	48	10.9	0.54 (0.20, 1.46)	
Powell 2011	0.288	111	0.615	109	59.7	0.50 (0.33, 0.76)	*
Combined	0.320	209	0.590	208	100.0	0.57 (0.41, 0.80)	•
[†] total number of patients Favours FeNO Favours cont							
Table and figure reproduced from ¹				red	uction in re	43% lative exacerbation	rate

FeNO-guided therapy is superior to a clinical management strategy in children

Algorithm A Initial clinical assessment for adults, young people and children with suspected asthma

This algorithm is based on recommendations from NICE's guideline on asthma: diagnosis, monitoring and chronic asthma management (2017)

© NICE 2017. All rights reserved. Subject to Notice of rights.

Assessing and diagnosing asthma in people aged 17 and over

FeNO, fractional exhaled nitric oxide Positive test thresholds

Obstructive spirometry: FEV1/FVC ratio less than 70% (or below the lower limit of normal if available) FeNO: 40 ppb or more BDR: improvement in FEV1 of 12% or more and increase in volume of 200 ml or more Peak flow variability: variability over 20%

Peak flow variability: variability over 20% Direct bronchial challenge test with histamine or methacholine: PC20 of 8 mg/ml or less

NICE National Institute for Health and Care Excellence

This algorithm is based on recommendations from NICE's guideline on <u>asthma: diagnosis, monitoring and</u> <u>chronic asthma management</u> (2017)

BDR, bronchodilator reversibility

© NICE 2017. All rights reserved. Subject to Notice of rights.

Asthma phenotypes

Eosinophilic airway inflammation and

Haldar et al AJRCCM 2008;178:218-24

airway dysfunction

and

Symptoms

Asthma Control Test[™] (ACT)

Score In the past 4 weeks, how much of the time did your asthma keep you 1. from getting as much done at work, school or at home? Most of 3 A little of None of All of Some of the time the time the time the time the time 2. During the past 4 weeks, how often have you had shortness of breath? More than 3 to 6 times 3 Once or twice Once 4 Not at all once a day a day a week a week During the past 4 weeks, how often did your asthma symptoms 3. (wheezing, coughing, shortness of breath, chest tightness or pain) wake you up at night, or earlier than usual in the morning? 2 or 3 nights 2 4 or more Once 3 Once 4 Not at all nights a week a week or twice a week During the past 4 weeks, how often have you used your rescue 4. inhaler or nebulizer medication (such as albuterol)? 1 or 2 times 2 or 3 times 3 Once a week 3 or more 4 Not at all times per day per day per week or less 5. How would you rate your asthma control during the past 4 weeks? Completely Not controlled Poorly Somewhat 3 Well controlled at all controlled controlled controlled Copyright 2002, QualityMetric Incorporated. Patient Total Score

Asthma Control Test Is a Trademark of QualityMetric Incorporated.

TIME COURSE FOR THE IMPROVEMENT OF VARIOUS PARAMETERS

Woolcock, ERS 2000

BMJ 2014;348:g3009 doi: 10.1136/bmj.g3009 (Published 13 May 2014)

Page 1 of 16

Comparative effectiveness of long term drug treatment strategies to prevent asthma exacerbations: network meta-analysis

© 0 OPEN ACCESS

Rik J B Loymans general practitioner¹, Armin Gemperli assistant professor²³⁴, Judith Cohen general practitioner¹, Sidney M Rubinstein senior researcher⁵, Peter J Sterk professor⁶, Helen K Reddel research leader⁷, Peter Jüni professor², Gerben ter Riet associate professor¹

¹Department of General Practice, Academic Medical Center, University of Amsterdam, PO box 22700, 1105 DE, Amsterdam, Netherlands; ²Division of Clinical Epidemiology and Biostatistics, Institute of Social and Preventive Medicine, University of Bern, Berne, Switzerland; ³Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; ⁴Swiss Paraplegic Research, Nottwil, Switzerland; ⁵Department of Health Sciences, Section Health Economics and Health Technology Assessment, VU University Amsterdam, Amsterdam, Netherlands; ⁶Department of

criptor | Sub level 1

Window of opportunity for Symbicort[®] SMART to prevent exacerbations?

Tattersfield investigated 425 severe exacerbations observed in the FACET study (double–blind, randomised, parallel-group, multi Centre study), which compared the effect of low- and high-dose budesonide with and without twice-daily treatment with formoterol. The primary end point was the number of severe and mild asthma exacerbations over the year of the stud

Severe exacerbations were defined by a fall in PEF of >30% from baseline values during the run-in period on 2 consecutive days or the need for a course of oral corticosteroids as judged by the patient or doctor.

Adapted from Tattersfield A, et al. Am J Respir Crit Care Med 1999;160:594–599.

COMPASS: Study objectives and endpoints

Objective

 To compare the efficacy and safety of the Symbicort maintenance and reliever therapy regimen with two-fold higher maintenance dose of Symbicort plus a SABA (terbutaline) or Seretide plus a SABA (terbutaline), as needed

Study design and population

- A 6-month, randomised, doubleblind parallel group study
- Carried out in 235 centres in 16 countries
- 3,335 patients aged 12 years or older

Primary outcome

 Time to first severe exacerbation*

SABA=short-acting ß-agonist.

*Severe exacerbations were defined as deterioration in asthma resulting in hospitalisation or emergency room treatment, or the need for oral steroids for ≥3 days (as judged by the investigator). Kuna P, et al. Int J Clin Pract 2007;61:725–736.

COMPASS: Study design

Bd=twice a day; ICS=inhaled corticosteroid; LABA=long-acting β -agonist; SABA=short-acting β_2 -agonist. Adapted from Kuna P, et al. *Int J Clin Pract* 2007;61:725–736.

Symbicort[®] SMART reduces severe exacerbations by 39% vs salmeterol/fluticasone over 6 months

As well as meeting its primary endpoint (time to first severe exacerbation), in this study, Symbicort[®]
 SMART reduced the total number of severe exacerbations over 6 months

Severe exacerbations were defined as exacerbations requiring either **A.** hospitalisation, **B.** emergency room treatment or **C.** treatment with oral steroids for 3 days or more. Kuna P, et al. *Int J Clin Pract* 2007;61:725–736. Symbicort[®] SMART provides similar symptom control to salmeterol/fluticasone at a lower BDP equivalent ICS dose

Adapted from Kuna et al 2007

*Actual dose = dose prescribed at randomisation.

Bid=twice daily; BDP=beclomethasone dipropionate; BUD/FORM=budesonide/formoterol; ICS=inhaled corticosteroid; SABA=short-acting β_2 agonist; SAL/FLU=salmeterol/fluticasone; SMART=budesonide/formoterol maintenance and reliever therapy. Kuna P, et al. *Int J Clin Pract* 2007;61:725–736. Symbicort[®] SMART reduces severe exacerbations requiring oral steroid/ER treatment vs salmeterol/fluticasone over 6 months

Severe exacerbations were defined as exacerbations requiring either **A.** hospitalisation, **B.** emergency room treatment or **C.** treatment with oral steroids for 3 days or more. Kuna P, et al. *Int J Clin Pract* 2007;61:725–736.

SABA RELIEVERS

Bricanyl Turbuhaler † ^ terbutaline 500mcg

Ventolin Inhaler † ^ salbutamol 100mcg INVESTIGATION NO. ASMOL

Airomir Autohaler ‡ ^ salbutamol 100mcg

Asmol Inhaler † ^ salbutamol 100mcg

8-11 fem. Smo

NON STEROIDAL PREVENTERS

Singulair Tablet a montelukast 4mg • 5mg • 10mg

Generic medicine suppliers

1

The 12

The state

Intal Inhaler † sodium cromoglycate 1mg + 5mg*

*Intal Forte

Tilade Inhaler † nedocromil sodium 2mg

ICS PREVENTERS

Flixotide Inhaler †

fluticasone propionate

PLOTE IL PLAT

Pulmicort

200 µg.

Andread Bill

*Flixotide Junior

budesonide

NYTHI OLY MIDON

QVAR

208 dimes

QVAR Inhaler †

beclometasone

50mcg • 100mcg

50mcg* • 125mcg • 250mcg

Flixotide Accuhaler † fluticasone propionate 100mcg* • 250mcg • 500mcg

Alvesco Inhaler † ciclesonide 80mcg • 160mcg

QVAR Autohaler ± beclometasone 50mcg • 100mcg

RESOURCES

Australian Asthma Handbook: asthmahandbook.org.au COPD-X Plan: copdx.org.au

INHALER TECHNIQUE How-to videos, patient and practitioner information nationalasthma.org.au

Inhalers/MDIs should be used with a compatible spacer

Australia with support from AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Mundipharma and Novartis

ICS/LABA COMBINATIONS

Symbicort Rapihaler ‡ budesonide/formoterol 50/3 • 100/3 • 200/6*

Seretide Accuhaler ‡

100/50 • 250/50 • 500/50*

PRESCRIPTION ONLY MEDICINE

BREO

. .

fluticasone propionate/salmeterol

100/25* • 200/25

2012 0000

200

budesonide/formoterol

100/6 • 200/6 • 400/12*

Symbicort Turbuhaler ‡

Seretide MDI ± fluticasone propionate/salmeterol 50/25 • 125/25 • 250/25*

Breo Ellipta ± fluticasone propionate/formoterol fluticasone furoate/vilanterol 50/5 · 125/5 · 250/10

LABA MEDICATIONS

Serevent Accuhaler ± salmeterol 50mca

Onbrez Breezhaler[^]

indacaterol

150mcg * 300mcg

onbrez!

1.41

^a Asthma authority required benefit ^ COPD unrestricted benefit # COPD restricted benefit

^C COPD authority required benefit Check TGA and PBS for current age and condition criteria

LAMA MEDICATIONS

Spiriva Handihaler ^

tiotropium 18mcg

Spiriva Respimat ^ tiotropium 2.5mcg

Bretaris Genuair ^

actidinium 322mcg

Seebri Breezhaler ^ glycopyrronium 50mcg

Incruse Ellipta ^ umeclidinium 62.5mcg

Atrovent Metered Aerosol † ^ ipratropium 21mcg

120

LAMA/LABA COMBINATIONS

Brimication

340/12

Ultibro Breezhaler C

110/50

indacaterol/glycopyrronium

Brimica Genuair C

aclidinium/formoterol

Anoro Ellipta C umeclidinium/vilanterol 62.5/25

TREATMENT GUIDELINES

This chart was developed independently by the National Asthma Council

Pulmicort Turbuhaler † 100mcg • 200mcg • 400mcg

SULLAR SULLAR

Oxis Turbuhaler t

formoterol

6mcg • 12mcg

Tiotropium and severe asthma

- No specific recommendation
- Small positive effect on symptoms and AQLQ
- Biggest effect in men, former smokers and in those with impaired but reversible airflow obstruction
- Exacerbation numbers were low

Kerstijens et al. NEJM 2012;367:1198-207

Future/current options

FeNO and the response to Omalizumab (anti-lgE)

Hanania et al. AJRCCM 2013;187:804-811

Future therapies: Mepolizumab (anti-IL-5)

OBESITY

INCREASING PREVALENCE IN WESTERN COUNTRIES:

Obesity in the UK

- 2009: 61.3% of adults were overweight or obese
- By 2050 approximately 60% of men and 50% of women will be obese
- Obesity contributes to about 1000 deaths per week in the NHS
- Adult obesity has almost doubled since the mid 1980's

OBESITY & ASTHMA

Beuther DA & Sutherland ER – Overweight, obesity, and incident asthma. A meta-analysis of prospective epidemiologic studies. *Am J Respir Crit Care Med* 2007;175:661.666

OBESITY & ASTHMA

Camargo CA et al – Prospective study of Body Mass Index, weight change and risk of adult-onset of asthma in women. *Arch Internal Med* 1999;159:2582-2588

OBESITY & ASTHMA

Mechanisms involved in the relationship between asthma and obesity

Lung mechanics, obesity and asthma

Inflammation in obesity

Corticosteroid insensitivity in obesity

Influence of body mass index on the response to asthma controller agents

M. Peters-Golden*, A. Swern#, S.S. Bird¹, C.M. Hustad¹, E. Grant¹ and J.M. Edelman¹

ERJ, 2006

Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma

Louis-Philippe Boulet^{a,*}, Edmee Franssen^b

Resp Med, 2007

Asthma severity significantly greater in the overweight and obese and reduced response to ICS

Obese asthmatics less likely to achieve symptomatic control and reduced response to ICS

Body Mass Index and Response to Asthma Therapy: Fluticasone Propionate/Salmeterol versus Montelukast

CARLOS A. CAMARGO, JR., M.D.,¹ LOUIS-PHILIPPE BOULET, M.D.,² E. RAND SUTHERLAND, M.D.,³ WILLIAM W. BUSSE, M.D.,⁴ STEVEN W. YANCEY, M.S.,⁵ AMANDA H. EMMETT, M.S.,⁵ HECTOR G. ORTEGA, M.D., SC.D.,⁵ AND THOMAS J. FERRO, M.D.^{5,*} Altered response to ICS with higher BMI

J Asthma, 2010

Weight loss and bariatric surgery

- Al-Alwan et al, ATS 2012
 - 11 obese non-atopic asthmatics and 15 controls
 - 1 year post surgery: improvements in lung function in control group, improvements in impedance in asthmatics
- Dixon et al, JACI 2011
 - 23 asthmatic and 21 non asthmatic patients
 - Significant improvements in asthma control and AHR post surgery
 - Increased BAL cytokines at 1 year in asthmatic group
- Reddy et al, 2011
 - 13,057 bariatric surgery patients
 - 2,562 (18.6%) were on asthma medications
 - 257 followed up for one year post surgery
 - > 13 of 28 had stopped oral steroids
 - ICS use decreased from 50% to 30%

Macrolides and severe airway disease

Macrolides and non-eosinophilic asthma: the AZISAST study

Brusselle et al. Thorax 2013;68:322-9

Summary

- In 2015, 1,468 people died from asthma in the UK – the highest level for over 10 years¹
- The NRAD, Asthma UK, ERS White book all suggest 30% incorrect diagnosis of Asthma
- The 2014 NRAD report highlighted excessive prescribing of SABAs and under-prescribing of preventer medication²
- BTS 2016 dropped Step 1 (SABA alone)
- Symbicort SMART (budesonide/formoterol) allows use of a single inhaler for both maintenance and reliever therapy in asthma^{3,4}
- Use of a Symbicort SMART regimen reduces:^{5,6} the risk of severe exacerbations by 39% vs salmeterol/fluticasone + SABA⁶

- the steroid load by 25% in terms of BDP equivalents vs salmeterol/fluticasone + SABA⁶
- the need for reliever therapy⁶
 From 1st January 2018 The price of
 Symbicort Turbohaler will be aligned across all strengths at £28
- NICE recommends Spirometry, FENO for diagnosis
- All that wheezes not ICS requiring asthma
- Tiotropium, Biologics, Macrolides all present

NRAD=National Review of Asthma Deaths; SABA=short-acting β_2 -agonist. SMART= Symbicort Maintenance and Reliever Therapy. 1. British Thoracic Society. *Updated national guidance launched to help reduce asthma attacks and save lives* [online] 2016. Available from: https://www.britthoracic.org.uk/pressmedia/2016/updated-national-guidance-launched-to-help-reduce-asthma-attacks-and-save-lives/ [Accessed: July 2017]; 2. Royal College of Physicians. *Why Asthma Still Kills? The National Review of Asthma Deaths (NRAD)* [online] 2014. Available from: https://www.rcplondon.ac.uk/projects/outputs/whyasthma-still-kills [Accessed: July 2017]; 3. AstraZeneca UK. Symbicort Turbohaler 100/6: Summary of Product Characteristics. 2017; 4. AstraZeneca UK. Symbicort Turbohaler 200/6: Summary of Product Characteristics. 2017; 5. Rabe KF, et al. *Lancet* 2006;368:744–753; 6. Kuna P, et al. *Int J Clin Pract* 2007;61:725–736.