Palpitations

Prof Diana Gorog
Clinical Director for Cardiology
Consultant Interventional Cardiologist

Arrhythmia from a GP Perspective

• Common presentation
• Significant social impact
• Often benign cause
• Associated with considerable morbidity
• Nevertheless potentially lethal
• Chapter 8 of NSF for CHD
Which patient do I refer?

Arrhythmia from a Patient Perspective

- “I know something’s wrong but nobody takes me seriously”

- “My heart keeps missing beats (and I am really worried I am going to die)”

- Less than 10% of patients will have a significant arrhythmia
Palpitation

• Def.: An (unpleasant) awareness of forceful, irregular, or rapid beating of the heart.

 – Instantaneous or transient vs. sustained
 – Irregular vs. regular
 – Sudden vs. gradual onset and termination

Palpitations: History

Symptoms:

• “flip-flopping in chest” – isolated PACs or PVCs

• “missed” beats

• “rapid fluttering in chest” – atrial or ventricular arrhythmias

• “pounding in the neck” – AV node reentrant tachycardia
Palpitations: History

Mode of Onset:
- Abrupt suggests paroxysmal abnormal tachycardia, though sinus tach may start abruptly in anxiety.

Mode of Termination:
- Abrupt suggests paroxysmal arrhythmia, though high adrenergic tone caused by arrhythmia may result in consequent sinus tach.

Palpitations: History

Characteristics:
- Rapid, irregular – AF, AFL, Atrial tachycardia, multiple PACs or PVCs
- Rapid, regular – SVT, VT

Circumstances:
- Panic/anxiety – the chicken or the egg?
- Catecholamine excess
 - Exercise – idiopathic RVOT VT, AF
 - Emotional startle – Long QT syndrome
Precipitants

- Caffeine
- Alcohol
- Hormonal changes
 - Pregnancy
 - Menopause
- Exercise

How should I assess someone who has palpitations?

- **Assess symptoms suggesting a serious complication** from an arrhythmia including:
 - Breathlessness
 - Chest pain
 - Syncope or dizziness
- **Check blood pressure**
- **Assess risk of serious arrhythmia:**
 - Family history of premature sudden cardiac death
 - Personal history of myocardial infarction or cardiomyopathy
- **Take an ECG** including a long rhythm strip.
- **If there is uncertainty about excluding VT or compromising paroxysmal SVT seek help urgently.** Consider:
 - Faxing the ECG for immediate secondary care interpretation, or
 - Emergency admission, ensuring the ECG is included with the letter of referral.
When are palpitations likely to be an arrhythmia?

High Positive predictive Value of:
- Symptoms assoc. with syncope
- Symptoms during exercise
- Symptoms disturbing sleep
- Regular palpitations

High Pre test odds or red flags:
- Known Structural heart disease
- Family history SCD
- Personal Hx Syncope
- Male
- Increased age

Palpitations: Workup

- Good history (inc. past medical & FH)
- Check FBC, U&E and thyroid function
- 12 lead ECG
- 24 hour Holter monitor
- Ambulatory ECG
 - Continuous loop event recorder
 - Event recorders with auto-activation (features of both Holter and event recorder) (e.g. Novacor)
- Echocardiogram
- Treadmill test (for sxs with or after exercise)
- Implantable loop recorder
- E.P. testing
Palpitations: Workup

- Good history (inc. past medical & FH)
- Check FBC, U&E and thyroid function
- 12 lead ECG
- 24 hour Holter monitor
- Ambulatory ECG
 - Continuous loop event recorder
 - Event recorders with auto-activation (features of both Holter and event recorder) (e.g. Novacor)
- Echocardiogram
- Treadmill test (for sxs with or after exercise)
- Implantable loop recorder
- E.P. testing
Sinus rhythm ECG

• May be:
 – Indicative of need for further investigations
 • Non-specific changes (e.g. TW inversion, LVH)
 – Prognostic
 • Prior MI, HCM
 – Diagnostic
 • WPW, LQTS, Brugada
 • (rarely delayed potentials or epsilon waves in ARVC)

Characteristic ECG abnormalities associated with increased risk of arrhythmia:

• Evidence of an old myocardial infarction. Example ECG.
 – Pathological Q waves
 – Inversion of T waves
 – Loss of R wave progression across the chest leads following an anterior MI.

• Left ventricular hypertrophy. Example ECG.
 – R wave in V6 greater than 25 mm.
 – R wave in V6 plus S wave in V1 greater than 35 mm
 – Axis normal or deviated to the left.

• Right ventricular hypertrophy. Example ECG.
 – Tall R wave in V1.
 – T wave inversion in V1 – V3 or V4.
 – Right axis deviation.
Characteristic ECG abnormalities associated with increased risk of arrhythmia:

- **Evidence of an old myocardial infarction.** Example ECG.
 - Pathological Q waves
 - Inversion of T waves
 - Loss of R wave progression across the chest leads following an anterior MI.

- **Left ventricular hypertrophy.** Example ECG.
 - R wave in V6 greater than 25 mm.
 - R wave in V6 plus S wave in V1 greater than 35 mm
 - Inverted T wave in V1, VL, V5 – V6.
 - Axis normal or deviated to the left.

- **Right ventricular hypertrophy.** Example ECG.
 - Tall R wave in V1.
 - T wave inversion in V1 – V3 or V4.
 - Right axis deviation.
Characteristic ECG abnormalities associated with increased risk of/with arrhythmia:

- **Evidence of an old myocardial infarction.** Example ECG.
 - Pathological Q waves
 - Inversion of T waves
 - Loss of R wave progression across the chest leads following an anterior MI.

- **Left ventricular hypertrophy.** Example ECG.
 - R wave in V6 greater than 25 mm.
 - R wave in V6 plus S wave in V1 greater than 35 mm
 - Inverted T wave in V1, VL, V5 – V6.
 - Axis normal or deviated to the left.

- **Right ventricular hypertrophy.** Example ECG.
 - Tall R wave in V1.
 - T wave inversion in V1 – V3 or V4.
 - Right axis deviation.
Characteristic ECG abnormalities associated with increased risk of with arrhythmia:

- **P wave abnormalities.**
 - Peaked P waves occur with right atrial hypertrophy caused by tricuspid valve stenosis or pulmonary hypertension. [Example ECG](#).
 - Broad and bifid P waves occur with left atrial hypertrophy usually caused by mitral stenosis.

- **Evidence of Wolff–Parkinson–White syndrome.** [Example ECG](#).
 - Short PR interval.
 - Slight widening of the QRS: delta wave with normal terminal QRS segment.
 - Dominant R wave in V1.
 - Inverted T waves in V1 – V4.

- **Prolonged QT** [Example ECG](#).
 - Calculate the corrected QT (QTc) by dividing the QT/√R-R interval.
 - Normal <0.45
Characteristic ECG abnormalities associated with increased risk of arrhythmia:

- **P wave abnormalities.**
 - Peaked P waves occur with right atrial hypertrophy caused by tricuspid valve stenosis or pulmonary hypertension. Example ECG.
 - Broad and bifid P waves occur with left atrial hypertrophy usually caused by mitral stenosis.

- **Evidence of Wolff–Parkinson–White syndrome.** Example ECG.
 - Short PR interval.
 - Slight widening of the QRS: delta wave with normal terminal QRS segment.
 - Dominant R wave in V1.
 - Inverted T waves in V1 – V4.

- **Prolonged QT** Example ECG.
 - Calculate the corrected QT (QTc) by dividing the QT/√R-R interval.
 - Normal <0.45
WPW

• URGENT referral

Characteristic ECG abnormalities associated with increased risk of arrhythmia:

• P wave abnormalities.
 – Peaked P waves occur with right atrial hypertrophy caused by tricuspid valve stenosis or pulmonary hypertension. Example ECG.
 – Broad and bifid P waves occur with left atrial hypertrophy usually caused by mitral stenosis.

• Evidence of Wolff–Parkinson–White syndrome. Example ECG.
 – Short PR interval.
 – Slight widening of the QRS: delta wave with normal terminal QRS segment.
 – Dominant R wave in V1.

• Prolonged QT Example ECG.
 – Calculate the corrected QT (QTc) by dividing the QT/R-R interval.
 – Normal <0.45
Palpitations: Workup

• Good history (inc. past medical & FH)
• Check FBC, U&E and thyroid function
• 12 lead ECG
• 24 hour Holter monitor
• Ambulatory ECG
 – Continuous loop event recorder
 – Event recorders with auto-activation (features of both Holter and event recorder) (e.g. Novacor)
• Echocardiogram
• Treadmill test (for sx with or after exercise)
• Implantable loop recorder
• E.P. testing
Ambulatory ECG recording

• Holter monitoring
 – 24, 48hr, 7 day tapes
 – Continuous recording
 – Patient provides event diary
 – Clinically reported events and asymptomatic episodes examined
 – Low yield

Ambulatory ECG recording

• Event recording
 – Patient connected to continuous recorder
 • “loop” recorder records continuously but also erases data if not activated
 • Patient can activate recorder and thus record retrospectively and prospectively
 – Patient connects recorder when symptomatic and records prospectively only
Ambulatory ECG recording

- Event recording with automatic arrhythmia detection
 - Combines advantages of Holter monitoring and event recording
 - Both patient and device can trigger a recording if symptoms or an arrhythmia are suspected respectively

Implantable loop recorders

- Combined arrhythmia detection and patient activation
- Up to 3 years battery longevity
- Device can be interrogated and data downloaded multiple times
“Reveal” interrogation

Exercise test

Predominantly for exertional symptoms
Echo

- LV dysfunction
 - Scar
 - Ischaemic
 - other
- LVH
- Valvular disease
- Cardiomyopathy
 - HCM
 - Dilated
 - arrhythmogenic

MRI

- If
 - Malignant arrhythmia of unknown cause
 - Frequent RVOT ectopy suggestive of runs
 - Relevant FHx SCD
- Scar (small)
- Features of ARVC
- Sarcoid
- Amyloid
- HCM
Coronary Angiogram

- Assessment of VT
 - More often scar
 - Ischemia may be important in 30% cases

VT ➔ scar
VF ➔ ischaemia

Palpitations: Management

- Reassurance
- Beta blockers (or Ca blockers)
- Antiarrhythmic therapy
- Catheter ablation
- (ICD)
In summary

• Good history is ESSENTIAL
• Remember red flag signs!
• Investigate only those that need it
• Investigate these with most appropriate tests
• If high index of suspicion, keep testing!

References