Leveraging simulation in the post Covid world Prof Makani Purva Hull Teaching Hospitals NHS Trust

OBJECTIVES

- Analyse trends pertaining to simulation innovation
- Review the role of simulation in emerging healthcare challenges
- Identify key areas of focus for simulation going forward.

SIMULATION TAXONOMY REVIEW

International Journal of Healthcare Simulation \lor .

ORIGINAL RESEARCH

Transformative forms of simulation in health care – the seven simulation-based 'I's: a concept taxonomy review of the literature

Sharon Marie Weldon^{1,o}, Andy Graham Buttery^{2,o}, Ken Spearpoint³, Roger Kneebone⁴

¹School of Health Sciences, University of Greenwich, London, United Kingdom ²Institute of Medical Sciences, Canterbury Christ Church University, Canterbury, United Kingdom

³Medicine, University of Hertfordshire, Hatfield, United Kingdom ⁴Medicine, Imperial College London, London, United Kingdom

Corresponding Author: Sharon Marie Weldon, S.M.Weldon@greenwich.ac.uk

SBI

Innovation

Improvement

Intervention

Involvement

Identification

Inclusion

Influence

MASS SIMULATION EXERCISE IN HULL

SIMULATION BASED INNOVATION

SIMULATION BASED IMPROVEMENT

Kuyt et al. Advances in Simulation (2021) 6:11 https://doi.org/10.1186/s41077-021-00158-0

Advances in Simulation

RESEARCI

pen Acces

The use of virtual reality and augmented reality to enhance cardio-pulmonary resuscitation: a scoping review

Katherine Kuyt¹, Sang-Hee Park², Todd P. Chang³, Timothy Jung⁴ and Ralph MacKinnon^{1,4*}

SIMULATION BASED INTERVENTION

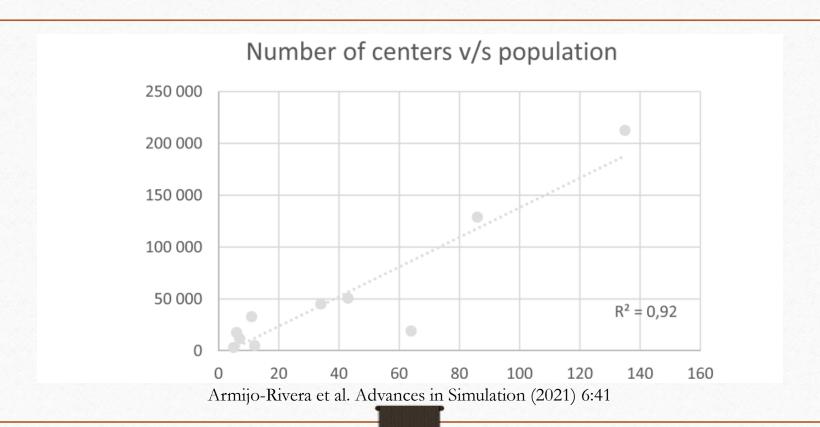
Díaz-Guio et al. Advances in Simulation (2021) 6:30 https://doi.org/10.1186/s41077-021-00183-z

Advances in Simulation

INNOVATION

Open Access

Online-synchronized clinical simulation: an efficient teaching-learning option for the COVID-19 pandemic time and: beyond



Diego Andrés Díaz-Guio^{1,2,3*}, Elena Ríos-Barrientos⁴, Pablo Andrés Santillán-Roldan⁵, Santiago Mora-Martinez¹, Ana Sofía Díaz-Gómez¹, Joel Alejandro Martínez-Elizondo⁴, Adrián Barrientos-Aguiñaga⁴, Maria Nathalie Arroyo-Romero⁵, Alejandra Ricardo-Zapata¹ and Alfonso J. Rodríguez-Morales⁶

Table 1 Demographic Characteristics of Centers by Location (N = 159)						
	Within a	Within a	Multiple	Stand-Alone	InSitu	
	School (%),	Hospital (%),	* * * * * * * * * * * * * * * * * * * *	Facility (%),	(%),	Other,
Center Characteristics	n = 91 (57.2)	n = 24 (15)	n = 21 (13.2)	n = 16 (10.1)	N = 1 (0.6%)	n = 6 (3.8)
Center size (N = 159)						
(%) Frequency by location						
InSitu (n = 3)	0 (0)	2 (66.7)	0 (0)	0 (0)	1 (33.3)	0 (0)
Under 5,000 sq ft (n $=$ 51)	29 (56.9)	10 (19.6)	4 (7.8)	4 (7.8)	0 (0)	4 (7.8)
5,000-10,000 sq ft (n = 48)	34 (70.8)	7 (14.6)	3 (6.3)	4 (8.3)	0 (0)	0 (0)
10,000-25,000 sq. ft (n = 39)	23 (59)	5 (12.8)	7 (17.9)	2 (5.1)	0 (0)	2 (5)
>25,000 sq. ft (n = 18)	5 (27.8)	0 (0)	7 (38.9)	6 (33.3)	0 (0)	0 (0)
Annual learner encounters ($N = 159$)	. (,	· (55.5)	- (()	J (J 1.5)	~ (~)	_ (55.5)
Weighted mean by confidence						
intervals						
5	50	400.00	500.00	400	NA	600
10	120	750	500	460	NA	600
25	275	3,300	1,405	1,250	NA	700
50	900	5,786			NA NA	
			5,306	3,750	NA NA	1,700
75	6,178	6,500	10,000	8,467		4,750
90	14,280	20,000	15,800	77,500	NA	
95	19,634	_	73,600	_	NA	
Accreditation $(N = 150)$						
None (n = 99)	13 (76.5)	62 (68.9)	9 (40.9)	9 (39.1)	0 (0)	0 (0)

Results of a nationwide descriptive survey of simulation center operations, Clin Sim in Nursing,2021

EQUITY OF ACCESS-can we achieve this?

SIMULATION BASED INVOLVEMENT

Pillay et al. Advances in Simulation (2021) 6:29 https://doi.org/10.1186/s41077-021-00181-1

Advances in Simulation

ADVANCING SIMULATION PRACTICE

Open Access

Optimising frontline learning and engagement between consultant-led neonatal teams in the West Midlands: a survey on the utility of an augmented simulation training technique

Thillagavathie Pillay^{1,2,3*}, Lynsey Clarke^{4,5}, Lee Abbott^{5,6}, Pinki Surana⁷, Asha Shenvi⁵, Sanjeev Deshpande⁸, Joanne Cookson^{5,6}, Matthew Nash⁹, Joe Fawke¹, Vishna Rasiah⁹ and Jonathan Cusack^{1,3}

Box 3 Randomised trial on the impact of sleep deprivation on non-technical skills

- ► The impact of sleep deprivation on the performance of anaesthetists is still uncertain, and research so far has mainly focused on technical skills. Neuschwander et al⁷⁹ studied the impact of sleep deprivation on non-technical skills, including 'team working, situation awareness, decision-making, and task management'. The authors developed a crisis management simulation scenario, using a high-fidelity manikin. Also, 10 participants undertook the scenario after a night shift and 10 after a rested night. Two blinded assessors rated the performance of participants using a validated scoring tool.
- ▶ The non-technical skills score was significantly lower for the sleep-deprived anaesthesiologists. In particular, team working scores were significantly lower. Self-confidence in anaesthesia skills just before the simulation was also significantly lower in the sleep-deprived group. These findings are important since non-technical skills are suspected to play a key role in avoiding serious adverse events. This study also illustrates the difficulty of recruiting when participation is voluntary: 100 participants were screened, but only 21 agreed to participate. However, the authors argue that the significant difference in non-technical skills makes lack of power unlikely.

Br J Anaesth 2017;119:125-31.

SIMULATION BASED IDENTIFICATION

Kaba and Barnes Advances in Simulation https://doi.org/10.1186/s41077-019-0107-8

(2019) 4:17

Advances in Simulation

INNOVATION

Open Access

Commissioning simulations to test new healthcare facilities: a proactive and innovative approach to healthcare system safety

Alyshah Kaba^{1,2*} and Sue Barnes³

Systematic review


In situ simulation as a tool for patient safety: a systematic review identifying how it is used and its effectiveness

Graham Fent, James Blythe, Omer Farooq, Makani Purva

PROACTIVE APPROACH CONTINUOUS SURVEILLANCE

Data gathering that provides management with insights regarding the quality of human performance, the extent to which it is a problem and the current state of the defences

Qual Saf Health Care 2009;18:256–260.

SIMULATION BASED INCLUSION

Purdy et al. Advances in Simulation https://doi.org/10.1186/s41077-023-00250-7 Advances in Si

Were there any potential or real harms associated with this session as it relate EDI? (stereotyping, not addressing obse

RESEARCH

Exploring equity, diversity, and inclusion in a simulation program using the SIM-EDI t the impact of a reflexive tool for simulation educators

peirs 1 and Victoria Brazil 1,2

Informing Practice and Policy Worldwide through Research and Scholarship

ORIGINAL RESEARCH: EMPIRICAL RESEARCH -QUALITATIVE

An analysis of nursing students' decision-making in teams during simulations of acute patient deterioration

Tracey K. Bucknall, Helen Forbes, Nicole M. Phillips, Nicky A. Hewitt, Simon Cooper & Fiona Bogossian FIRST2ACT Investigators

SIMULATION BASED INFLUENCE

Weldon et al. BMC Family Practice (2015) 16:109 DOI 10.1186/s12875-015-0327-5

RESEARCH ARTICLE

Open Access

Sequential Simulation (SqS): an innovative approach to educating GP receptionists about integrated care via a patient journey – a mixed methods approach

Sharon-Marie Weldon*, Shvaita Ralhan†, Elisabeth Paice†, Roger Kneebone† and Fernando Bello†

Box 4 Uncontrolled before—after study of a new drug packaging system

- ▶ Medication errors are a leading cause of adverse events in hospitals. Garcia et al⁹² studied the impact of a new labelling system using a simulated medicine room. For 30 min, each participant was handed a new medication chart once he/she had completed preparation for the previous one. Researchers timed the preparation of each medication chart using a stopwatch and counted the number of errors in preparation with the standard labelling system. They repeated the experience 3 months later, using a new labelling system proposed in the literature by Endestad et al.⁹⁹
- ► The error rate remained low with no significant change, but nurses were significantly quicker in their preparation with the new labelling system. These results contrast with a previous on-screen experiment, where the error rate deceased with the new system.

Hum Factors 2016;58:1206-16.

WAY FORWARD

- Explicit link to financial and quality gains
- Strengthen research in addressing healthcare challenges
- Integrate simulation into mainstream healthcare

SIMULATION-BASED EDUCATION IN HEALTHCARE

STANDARDS FRAMEWORK AND GUIDANCE

NHS Health Education England