
East of England ACCS Training day

Endocrine Emergencies

Vijay Kama Consultant Emergency Medicine Peterborough City Hospital

Anterior Pituitary

HGH (somatotropin) released under the influence of hypothalamic growth hormone releasing hormone (GHRH) and is inhibited by hypothalamic somatostatin

TSH released under the influence of hypothalamic thyrotropin releasing hormone TRH and inhibited by somatostatin

ACTH released under the influence of corticotropin releasing hormone

Prolactin stimulated by oxytocin, TRH, vasopressin and angiotensin 2 and inhibited by hypothalamic dopamine

Luteinizing hormone and **Follicle stimulating hormone** released under the influence of GnRH

Posterior Pituitary

ADH (vasopressin) released from the supraoptic nucleus in the hypothalamus

Oxytocin: released from the paraventricular nucleus in the hypothalamus

Oxytocin creates positive feedback loops. eg uterine contractions stimulate the release of oxytocin which in turn stimulates uterine contractions.

45yr head injury

- GCS 14/15 --- improved to 15/15
- Initial CT head normal
- Increased confusion after 24 hrs
- Repeat CT head –normal.
- What is the reason for confusion?
- What is the next test?

Investigations

- Glucose 5mmol/L
- Na 120
- K 4.5
- Renal function normal
- What further tests are required?

What other tests are to be sent to confirm the diagnosis?

SIADH

 Concentrated urine Ur Na >20 Ur Osmolality >500mosmkg Hyponatremia Serum Na < 125mmol/L In the absence of hypovolemia, oedema, diuretics

How should this patient be treated and the rationale?

What is the potential life threatening complication as a result of the treatment?

SIADH

Excessive release of ADH from the posterior pituitary

Common causes: Head injury, SAH, small cell lung cancer, pneumonia, lung and brain abscess, drug induced, sarcoidosis, hypothyroidism

Hypothalamic osmoreceptors are responsible for switching off ADH production in response to a reduction in plasma osmolality

In SIADH this fails and **dilutional hyponatraemia** results

Primarily a problem with being unable to handle water loading rather than excess solute loss

Hence treatment is usually fluid restriction

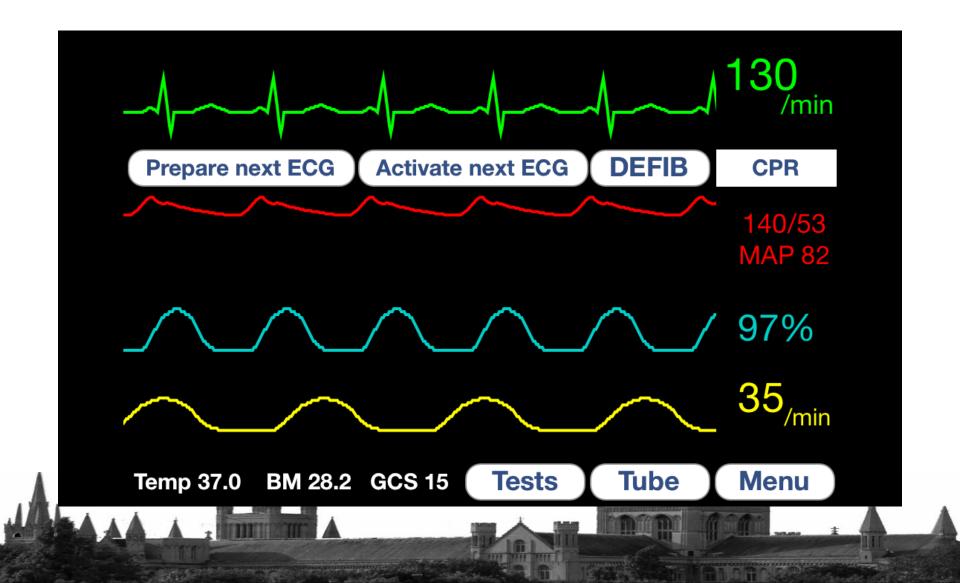
Demeclocycline in certain cases

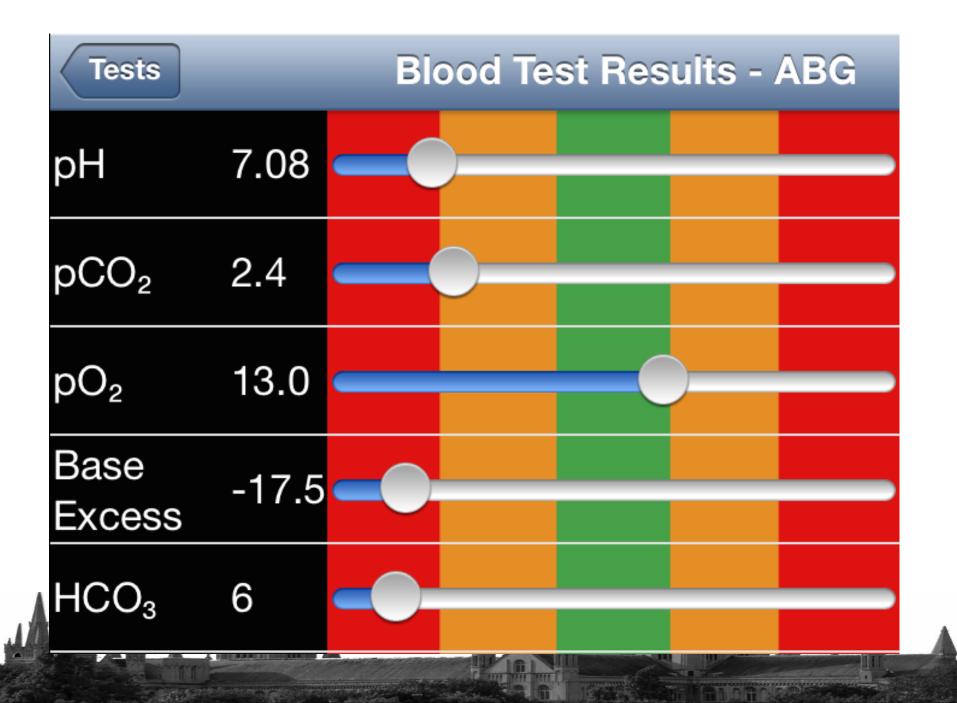
Diabetes insipidus

Excretion of large amounts of severely dilute urine with fluid restriction having no effect on urine concentration

Central DI: Most common ADH deficiency

Causes: Hypoxic encephalopathy, Neurosurgery, autoimmune, pituitary tumor


Nephrogenic DI: Lack of Aquaporin channels in the distal collecting duct


Causes: Amyloidosis, polysystic kidney disease, Lithium toxicity, hypercalcemia, hypokalaemia, release of ureteral obstruction, Sjogren syndrome, Barter syndrome, drug induced, hereditary

Diagnosis: Water deprivation test, DDAVP

16yr Male lethargic, drinking "loads"

Diagnostic Criteria - DKA

Ketonemia>3 mmol/L or Ketonuria > 2+ on urine dipstick

Blood glucose >11 mmol/L or known diabetes

Bicarbonate < 15 mmol/L and / or pH < 7.3

What are the indicators of severe DKA?

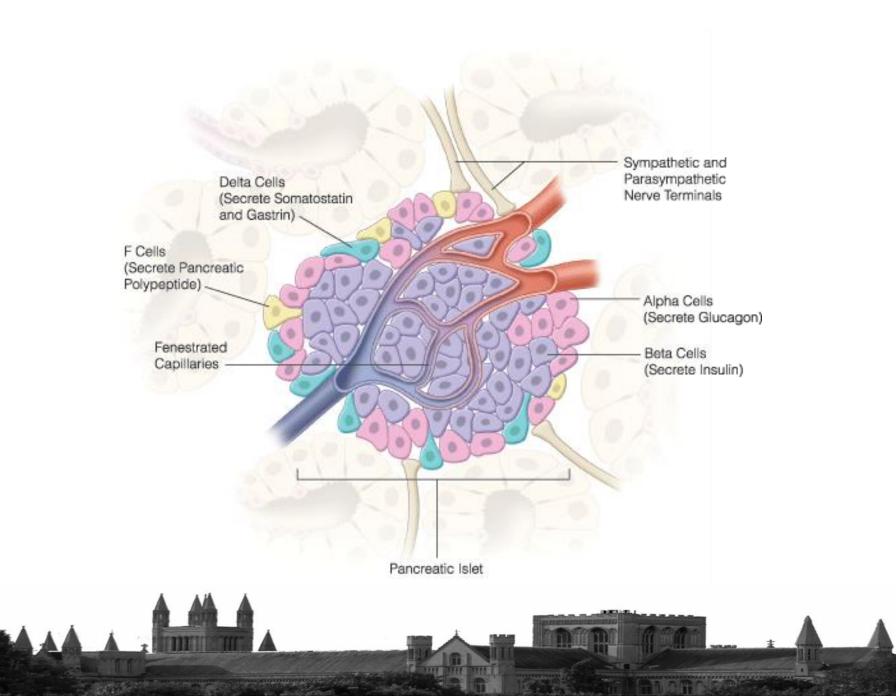
Indicators of Severe DKA

- Blood Ketones over 6 mmol/L
- Bicarbonate level below 5 mmol/L
- •Venous/arterial pH below 7.1
- •Hypokalaemia on admission (under 3.5 mmol/L)
- •GCS less than 12 or abnormal AVPU scale
- Oxygen saturation below 92% on air (assuming normal baseline respiratory function)
- Systolic BP below 90 mmHg
- Pulse over 100 or below 60 bpm
- Anion gap above16

Endocrine Pancreas

Functional anatomy of the endocrine pancreas

The synthesis and physiological effects of insulin


Glucagon: Stimulants to production and effects on the liver

Diabetes Mellitus

Physiological basis of insulin dependent and non-insulin dependent diabetes

Clinical effects of untreated diabetes

Insulin

Peptide hormone produced by beta cells in the pancreas

Lowers the concentration of glucose in the blood stream

Increases glycogen synthesis Increases lipid uptake and triglyceride formation by fat cells Increases amino acid uptake Increases cellular potassium uptake and lowers potassium levels in the blood.

Decreases gluconeogenesis in the liver

Glucagon

Peptide hormone produced by alpha cells of the pancreas

Raises concentration of glucose in the bloodstream

Binds to glucagon receptor on hepatocytes

Promotes gluconeogenesis and glycogenolysis

Glucagon turns off glycolysis in the liver

Induces lipolysis yielding glycerol and free fatty acids

Treatment aims of DKA

- Restoration of circulating volume
- Potassium replacement
- Commence a fixed rate intravenous insulin infusion 0.1 Unit/kg/hr
- Identify and treat precipitating factors
- Achieve a rate of fall of ketones of at least 0.5 mmol/L/hr
- In the absence of ketone measurement, bicarbonate should rise by 3 mmol/L/hr
- Thromboprophylaxis-LMWH

Fluid	Volume	
0.9% sodium chloride 1L *	1000ml over 1st hour	
0.9% sodium chloride 1L with potassium chloride	1000ml over next 2 hours	
0.9% sodium chloride 1L with potassium chloride	1000ml over next 2 hours	
0.9% sodium chloride 1L with potassium chloride	1000ml over next 4 hours	
0.9% sodium chloride 1L with potassium chloride	1000ml over next 4 hours	
0.9% sodium chloride 1L with potassium chloride	1000ml over next 6 hours	
Re-assessment of cardiovascular status at 12 hours is mandatory further fluid may be		

Re-assessment of cardiovascular status at 12 hours is mandatory, further fluid may be required

*Potassium chloride may be required if more than 1 litre of sodium chloride has been given already to resuscitate hypotensive patients

Potassium level in first 24 hours (mmol/L)	Potassium replacement in mmol /L of infusion solution
Over 5.5	Nil
3.5-5.5	40
Below 3.5	Senior review as additional potassium needs to be given (see serious complications section)

75 yrs known DM-2 SOB and fever capillary Blood gluscose-35 urea 13 Na 155 K 4

Calculate Osmolarity in this patient

Osmolarity

Calculated serum Osmolarity = 2(Na+K)+urea+glucose Osmolar Gap = calculated – measured (lab) Usually < 10 mosmol/kg

Treatment of HHS

- Similar to DKA
- •Be careful with fluids speeds as most patients are elderly
- If Na > 155 , use half normal saline

26 Female has wisdom tooth extracted yesterday and today feeling lethargic and "fainty"

PR 130/m	Na 126
BP90/40 mmHg	K 6
SaO2 96% poor trace	Ur 10.9
RR 24/m	Cr 115

Ph 7.27 PO2 12 kpa PCO2 3 kpa HCO3 12

BE -10

What other tests do you send and what is the rationale?

Tests to differentiate primary and secondary Addison's

- Serum Cortisol
- Serum ACTH

Treatment

- Rehydration
- Hydrocortisone /Dexamethasone
- No need of fludocortisone in ED
- Correct hypoglycemia and hyperkalemia
- •Treat the trigger

Adrenal insufficiency

Addison's disease (chronic hypoadrenalism)

Causes:

Adrenal dysgenesis
Impaired steroidogenesis (CAH, Smith-Lemli-Opitz syndrome)
Adrenal destruction (autoimmune adrenalitis - isolated or part of autoimmune polyendocrine syndrome - APS)
Corticosteroid withdrawal - exogenous glucocorticoids suppress CRH and ACTH

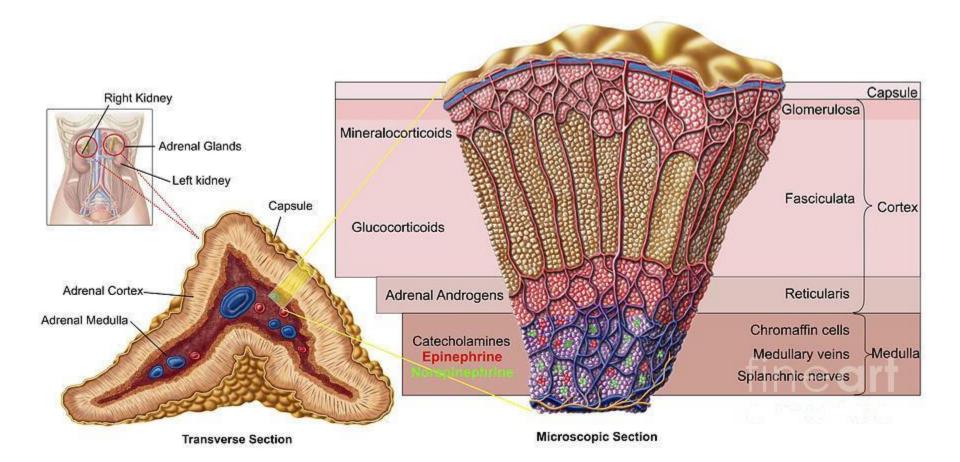
Fatigue, postural dizziness, weight loss, anxiety, nausea, diarrhoea, headache, salt craving Low blood pressure Hyperpigmentation of the skin (ACTH is a precursor for Melanocyte stimulating hormone)

Adrenal Gland

Functional anatomy

Cortical function

Effects of glucocorticoids


Clinical effects of disordered glucocorticoid secretion

Medullary function

Adrenaline

Clinical effects of disordered medullary function

A A/A

Cortisol

A steroid hormone

It acts to prepare the body for stress

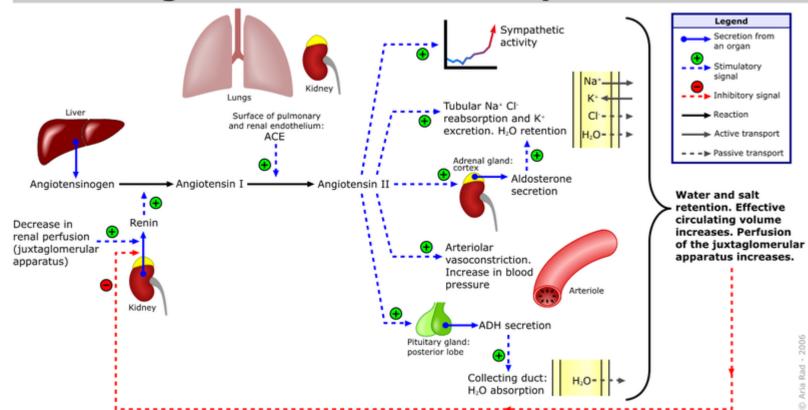
Cortisol causes an increase in all gluconeogenisis enzymes

Cortisol increases the production of amino acids from muscle breakdown. It halts the synthesis of protein and fat

Glucocorticoids reproduce glucagon action and oppose insulin action

- Suppresses the immune system:
- Decreases bone formation by:

Direct inhibition of osteoblast function Inhibit gastrointestinal calcium absorption


Cushing's syndrome

Prolonged exposure to inappropriately high levels of cortisol

Rapid weight gain Irritability, depression Bone and muscle weakness Diabetes mellitus Hypertension Amenorrhea in women Decreased fertility in men Hirsutism Baldness Hypercholesterolaemia

Dexamethasone suppression test

Renin-angiotensin-aldosterone system

Phaeochromocytoma

Neuroendocrine tumor of the adrenal medulla

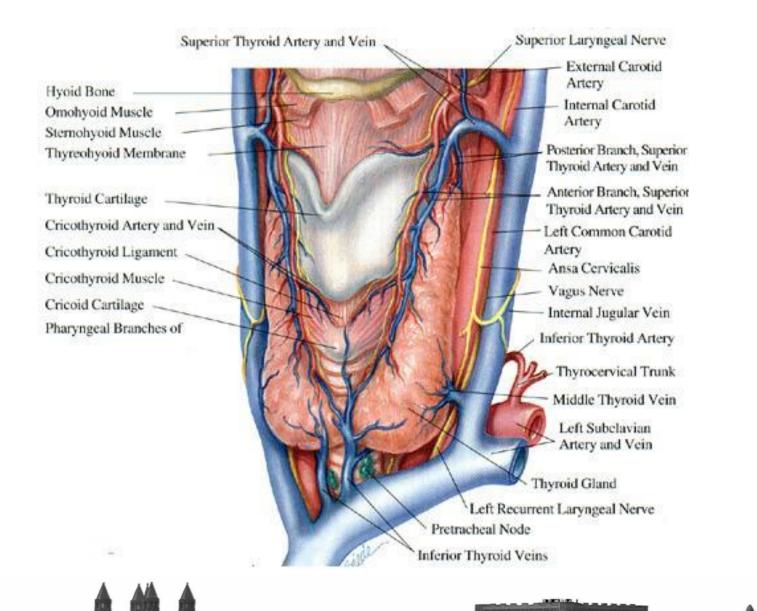
Excess catecholamines

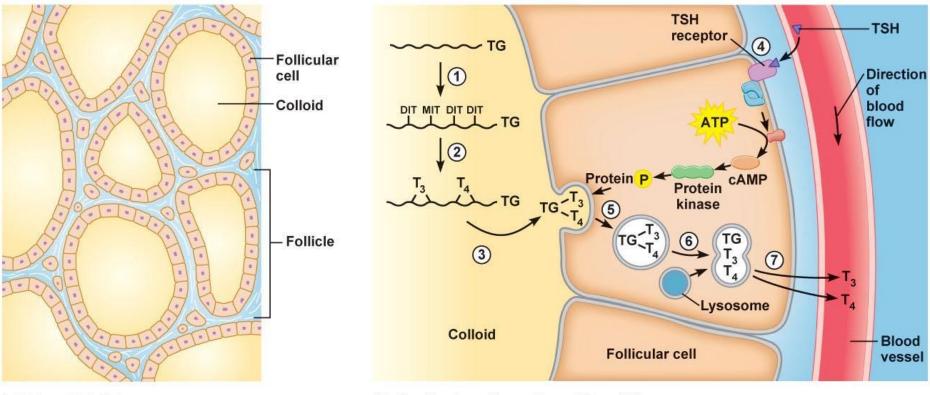
Elevated heart rate, blood pressure with orthostatic hypotension Paliptations, anxiety, diaphoresis Weight loss Elevated blood glucose (due to catecholamine induced lipolysis, high circulating free fatty acids and subsequent inhibition of glucose uptake by muscle)

25% familial, also a feature of MEN II syndrome

Measurements of catecholamines and metanephrines in plasma and urine

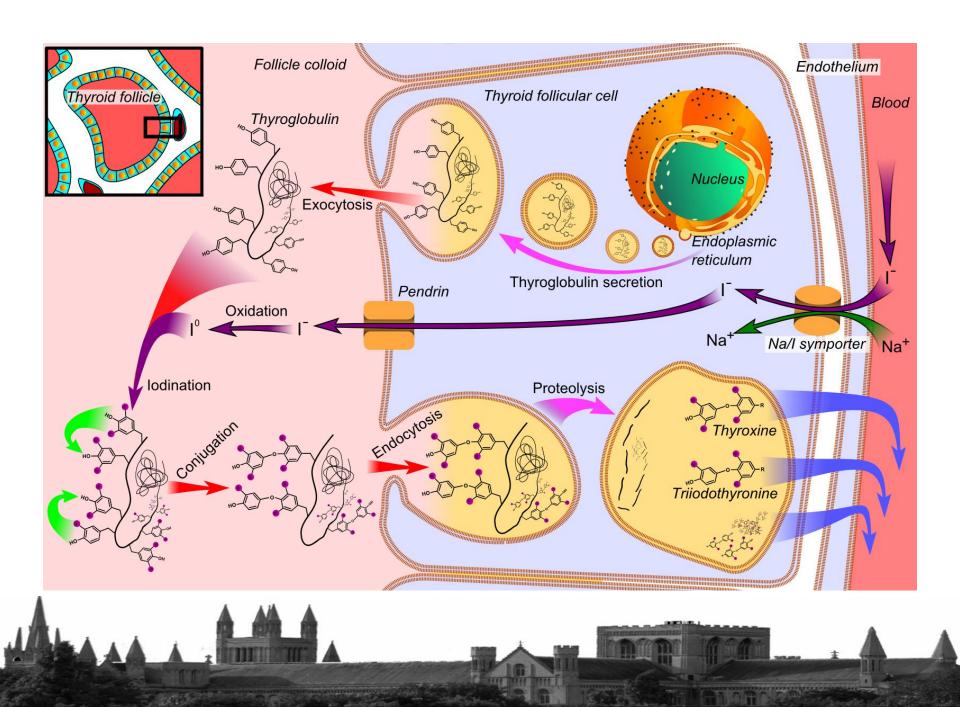
Thyroid Physiology

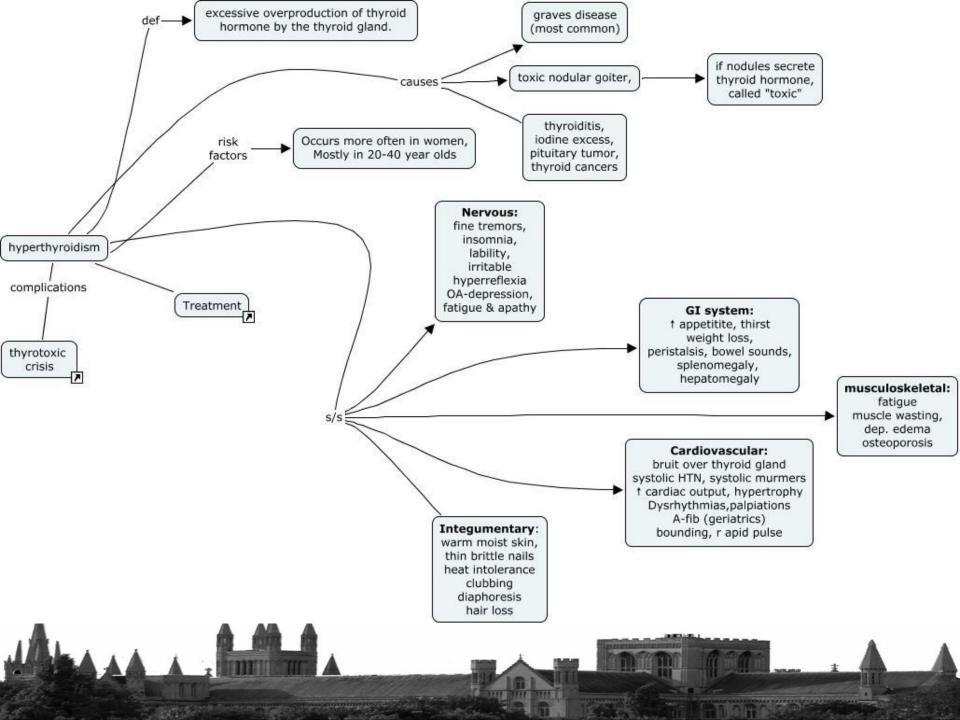

Functional anatomy


Transport of thyroid hormones

Physiological effects of thyroid hormones

Effects of disordered function





(a) Thyroid follicles

(b) Synthesis and secretion of thyroid hormones

© 2011 Pearson Education, Inc.

TABLE 2: WHAT CAUSES HYPOTHYROIDISM?

Several factors may contribute to the development of hypothyroidism, including:

Hashimoto's disease

Thyroiditis, or inflammation of the thyroid gland

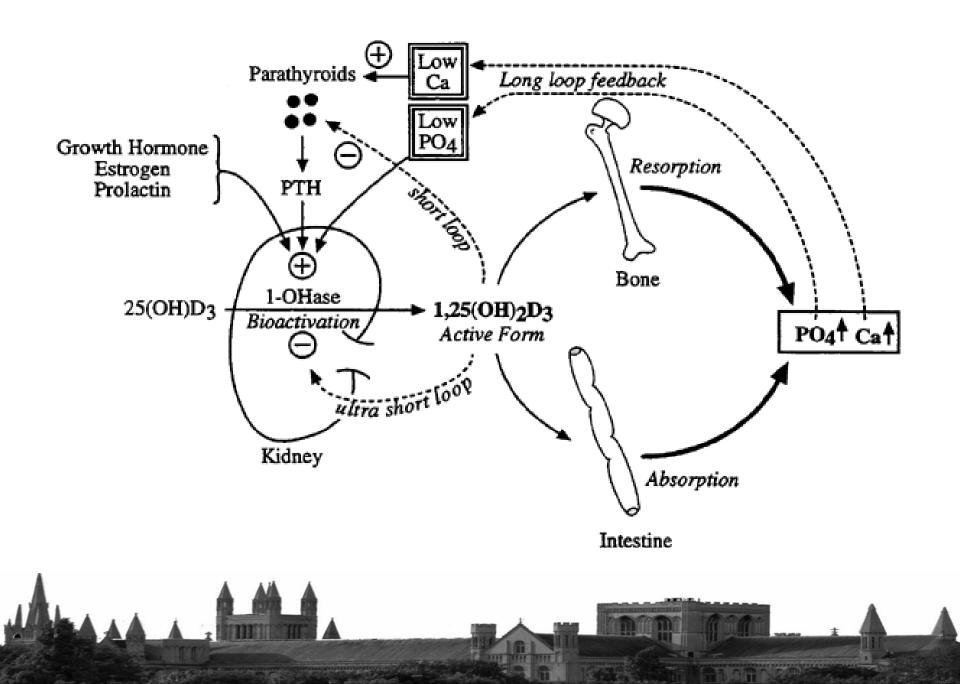
Congenital hypothyroidism, or hypothyroidism that is present at birth

Surgical removal of part or all of the thyroid gland

Radiation treatment of the thyroid

Use of certain pharmacologic agents, such as amiodarone, interferon-alpha, lithium, interleukin-2

Adapted from references 2-4 and 6.


Calcium and Bone Physiology

Functions of Calcium in health

Transportation of Calcium

PTH, Calcitonin and Vitamin D3

Effects of disordered calcium physiology

85yr is found to be off legs PR 100 ; BP100/60

Na 147 K 5 Ur 9 Cr 150	Ph 7.36
	HCO3 23
	PCO2 4Kpa

What is the provisional diagnosis?

How to detect AKI?

Detect AKI using (p)RIFLE, AKIN, KDIGO criteria:

Serum creatinine	rise ≥ 26 micromol/litre from baseline within 48 hours
Serum creatinine	rise by 50% or more in 7 days
Urine output	< 0.5ml/kg body weight/hour for 6 consecutive hours in adults

What are the risk factors for AKI?

Risk factors: adults

- Chronic kidney disease (or history of)
- Diabetes
- Heart failure
- Sepsis
- Hypovolaemia
- Age 65 years or over
- Use of drugs with nephrotoxic potential (for example, NSAIDs, ACE inhibitors)
- Use of iodinated contrast agents within past week
- Oliguria
- Liver disease
- Limited access to fluids, e.g. via neurological impairment
- Deteriorating early warning scores
- Symptoms or history of urological obstruction

References

http://chemistry.gravitywaves.com/CHE452/20_Calcium%20Homeostasis16.htm http://en.wikipedia.org/wiki/Glucocorticoid_remediable_aldosteronism http://en.wikipedia.org/wiki/Thyroid_hormone http://www.evergreensurgical.com/articles/Thyroid2.html http://fineartamerica.com/featured/anatomy-of-adrenal-gland-cross-section-stocktrek-images.html http://www.sciamsurgery.com/sciamsurgery/institutional/figTabPopup.action?bookId=ACS&linkId=p art11_ch09_fig16&type=fig http://kids.britannica.com/elementary/art-48974/The-anatomy-of-the-mammalian-pituitary-glandshowing-the-anterior http://diabetes.diabetesjournals.org/content/55/Supplement_2/S9/F1.large.jpg